Lab courses

List of experiments

General information about the practical courses at the faculty of physics can be found on this overview page

The lab courses of the 'Fortgeschrittenenpraktikum' are usually held in german if not otherwise agreed with your supervisor.

R2: Laue diffraction (Fortgeschrittenenpraktika)

The Laue experiment is a method for the elucidation of crystal structures by X-ray diffraction. It was first conducted in 1912 by Walter Friedrich and Paul Knipping in the Sommerfeldkeller of LMU and is therefore the oldest method of X-ray diffraction. The experiment proved the wave nature of X-ray radiation and contributed to the understanding of the structure of solids. Today Laue diffraction is mainly used for the elucidation of protein structures, as well as for very precise alignment of single crystals.

Supervisors

Theresa Kammerbauer (Nickel Group)
Theresa.Kammerbauer@physik.uni-muenchen.de

Veronika Reisner (Nickel Group)
V.Reisner@physik.uni-muenchen.de

One full day according to personal arrangement, in groups of two students.
Location of the lab course: Altbau Physik, basement, laboratory NU 111.
Please contact the tutors by email to fix a day for the lab course.

In addition we recommend the introductory chapters on the structure of solids, e.g. Siegfried Hunklinger - Festkörperphysik (chapters 3 and 4).

Java Applet for the Simulation of Laue patterns

Downloads

Instructions (DE) (PDF, 1,960 KB)
Diffraction theory (PDF, 4,533 KB)
bcc structures (PDF, 906 KB)
Warren: Laue method (PDF, 6,916 KB)
Properties of x-rays (PDF, 3,089 KB)

R3: Viskoelastizität - Rheologie (Fortgeschrittenenpraktika)

Rheologie ist die Wissenschaft, die sich mit der Verformung und dem Fließverhalten von Stoffen beschäftigt. Unter anderem wird dabei anhand von Spannungs-Dehnungs Beziehungen untersucht, wie ein Material auf eine mechanische Kraft reagiert. Die meisten Materialien sind entweder flüssig oder fest. In diesem Kurs möchten wir Ihnen aber zeigen, dass alle Materialien durch sowohl eine elastische als auch eine viskose Komponente beschrieben werden können. Wie hoch der Anteil der viskosen, bzw. elastischen Antwort eines Materials ist, hängt dabei von der Deformationsrate ab, sowie der Stärke der Deformation. Die Theorie der Viskoelastizität liefert eine gute Beschreibung der mechanischen Eigenschaften eines Materials. Im Bereich der linear visko-elastischen Antwort eines Materials, kann das Verhalten des Materials durch entsprechende Netzwerke aus Federn und Dämpfungszylindern dargestellt werden. In diesem Praktikum sollen Sie lernen, mit Hilfe eines Plate-Rheometers (hier wird das Material zwischen zwei Platten geschert), die viskoelastischen Eigenschaften eines Materials zu bestimmen.

Supervisor

Achim Brinkop (Serwane Group)
achim.brinkop@campus.lmu.de
+498921802036

Place/ Time

Labs N012 und N033, ground floor of LS Rädler
one working day for Bachelor students doing the 'Fortgeschrittenenpraktikum'

Schedule your lab day with your supervisor via mail or telephone. Get in contact not later than one week before the lab courses start.

Anleitung (DE) (PDF, 678 KB)
Instructions (EN) (PDF, 1,058 KB)

R1b: PCR & FCS (Biophysik Blockpraktika)

Characterizing Products of the Polymerase Chain Reaction by Fluorescence Correlation Spectroscopy. Part of the practical course in one block of the biophysics program in summer.

Supervisors

Nathalie Schäffler (Rädler Group)
n.schaeffler@physik.uni-muenchen.de

Julian Philipp (Rädler Group)
julian.philipp@campus.lmu.de

Place

Geschwister-Scholl-Platz 1, building N, LS Rädler
PCR part: room N 007
FCS part: room N 032

If you contact us by e-mail, please add both supervisors as recipients and your lab course partner in CC.
Please wear appropriate clothes and shoes. No flip-flops and no super-short hot pants, skirts or dresses. You are in a lab, not at the beach. In the FCS room you have to wear plastic overshoes, so you might prefer to wear sneakers or other closed shoes.

Instructions (EN) (PDF, 1,318 KB)
Anleitung (DE) (PDF, 1,318 KB)

L2b: DNA Origami (Biophysik Blockpraktika)

The DNA origami technique uses a long, viral, single-stranded DNA molecule as a framework strand (the
scaffold), which is brought into the desired shape by hundreds of short pieces of DNA (the staples). The
aim of this internship is to gain insight into the DNA origami technique.

Supervisor

Xin Yin (Liedl Group)
Xin.Yin@physik.uni-muenchen.de

Place/ Time

Altbau Physik, Erdgeschoss, Biochemie-Labor N 007
Start at 9 a.m.
The second day is short and will be scheduled during the first day

If possible, bring a laptop with caDNAno already installed:

Tutorial Videos zu caDNAno

Tutorial 1
Tutorial 2

Instructions and additional literature

Instructions (EN) (PDF, 1,170 KB)
Anleitung (DE) (PDF, 2,380 KB)
Tørring_2011 (PDF, 6,204 KB)
Rothemund_2006 (PDF, 575 KB)
Liedl_2010 (PDF, 4,461 KB)
Douglas_2009 (PDF, 5,647 KB)

R4b: Rheology on Hydrogels (Biophysik Blockpraktika)

In this lab course you will investigate the macroscopic visco-elastic properties of a polymer network using a rheometer and employ the obtained information to predict, if a particle of a given size is able to freely diffuse within the polymer network. Using time-lapse microscopy and particle tracking, we will perform a microscopic analysis of the particle motion within the polymer gel to verify if our predictions hold true.

Supervisor

Stefan Stöberl (Rädler Group)
Stefan.Stoeberl@physik.uni-muenchen.de

If you contact me by e-mail, please add your lab course partner in CC.

Place

Geschwister-Scholl-Platz 1, building N, LS Rädler
Rheometer: room N007
Time-lapse microscopy: room N032

Instructions (EN) (PDF, 478 KB)