Transformer & Kaffeemaschine

a) \(\frac{N_2}{N_1} = \frac{240V}{120V} = 2 \) d.h. die auf Seite der Kaffeemaschine angeschlossene Spule muß 2x mehr Windungen haben als die Netz-seitige Spule.

\[P_{eff} = V_{eff} \cdot I_{eff} \Rightarrow I_{eff} = \frac{P_{eff}}{V_{eff}} \]

Auf Seite der Kaffeemaschine:

\[I_{eff} = \frac{P_{eff}}{V_{eff}} = \frac{160W}{240V} = 4A \]
9) Widerstand: Nähre die Werte auf der Seite der Hafermaschine.

\[R = \frac{U}{I} = \frac{240V}{4A} = 60 \Omega \]

Alternative, nähre die Netzseitigen Werte und berücksichtige das Verhältnis der Windungen:

\[R_2 = \left(\frac{N_2}{N_1} \right)^2 \frac{U_1}{I_1} = 2^2 \cdot \frac{120V}{8A} \]

\[= 4 \cdot 15 \Omega = 60 \Omega \]