Graphitkristalle wirken auf einen Elektronenstrahl wie ein Gitter. Auf Grund der Welleneigenschaften von Elektronen erhält man Interferenzringe. In diesem Versuch wird die Abhängigkeit des Ringdurchmessers von der Beschleunigungsspannung untersucht.
In der Röhre wird ein Elektronenstrahl erzeugt. Mittels verschiedener Betriebsspannungen lässt sich ein schöner Elektronenstrahl erzeugen. Am Ende des Aufbaus zur Strahlerzeugung ist eine Probe mit Graphitpulver integriert. Die Graphitkristalle sind dort beliebig angeordnet. Trotzdem ergibt sich ein Interferenzmuster. Die beliebige Anordnung der Kristalle in der Ebene führt zur Ringstruktur. Die Verkippung gegen die Ebene stört deshalb nicht, weil durch den Glanzwinkel der Braggreflexion nur passend liegende Kristalle einen Beitrag zum Interferenzmuster liefern.
Die Elektronen besitzen in ihrer Eigenschaft als Welle eine Wellenlänge, die sogenannte De-Broglie-Wellenlänge:
λde Broglie = h/(2 me e UB)1/2
Erhöht man nun die Beschleunigungsspannung UB, so wird die Wellenlänge der Elektronen kleiner. Eine kleinere Wellenlänge bedeutet im Interferenzmuster auch ein kleiner Ringdurchmesser.
Im Versuch wird nun der Ringdurchmesser bzw. -radius bei einer Spannung von 5kV und 10kV verglichen. Da die Beschleunigungsspannung der Elektronen in der Formel für die Wellenlänge unter der Wurzel steht, erhält man für das Verhältnis der Werte nicht den Wert 2 sondern Wurzel 2.