Simulation of superconductivity

20 Jan 2023

A Munich team of researchers has for the first time monitored in an experiment how positive charge carriers in a solid-state model combined to form pairs. This process could play an important role in understanding high-temperature superconductivity.

Using a quantum simulator, researchers at the Max Planck Institute of Quantum Optics (MPQ) and the Cluster of Excellence MCQST have observed pairs of charge carriers that may be responsible for the resistance-free transport of electric current in high-temperature superconductors. So far, the exact physical mechanisms in these complex materials are still largely unknown. Theories assume that the cause for the pair formation and thus for the phenomenon of superconductivity lies in magnetic forces. The team in Garching has now for the first time been able to demonstrate pairs which are formed this way. Their experiment was based on a lattice-like arrangement of cold atoms, as well as on a tricky suppression of the movement of free charge carriers. The researchers report on their results in the journal Nature.


What are you looking for?